

Heavy Vehicle Specialist Certificate

Heavy Vehicle Specialist Inspector and Inspecting Organisation

Heavy Vehicle Specialist Inspector's Name (PRINT IN CAPS)

ID

LANCE CAWTE

LPC

Vehicle Registration*

6304J

VIN / Chassis Number

7A85N0J0298258881

Component being certified:

Chassis Modification

Load Anchorage

Log Bolsters

Towing Connection

X

Component Load Rating(s)

N/A

Brakes

SRT

Certification Category

HVEK

Description of Work

CERTIFY TO HEAVY VEHICLE BRAKE RULE 32015.

Code/Standard Certified to

SCHEDULE 5

General Drawing Number(s)

N/A

Supporting Documents

BRAKE CODE CERTIFICATE LC100804
PREV EXEMPTION REF HVB10/334

*Special Conditions

WARNING LAMP MUST ILLUMINATE WHEN IGNITION IS SWITCHED ON & THEN EXTINGUISH IMMEDIATELY OR WHEN VEHICLE SPEED EXCEEDS 7 KPH

Or

Certification Expiry Date (if applicable)

N/A

Hubodometer Reading (whichever comes first)

Declaration

I the undersigned, declare that I am the Heavy Vehicle
Specialist Inspector identified above and I hold a current valid
appointment. I certify that the above mentioned vehicle
component's design, manufacture and installation, and this
certification complies in all respects with the Land Transport
Rule Vehicle Standards Compliance 2002 and my Deed of
Appointment. To the best of my knowledge the information
contained in this Certificate is true and correct.

Designer's ID (if certified by a manufacturer)

Inspector's / Delegate's Signature

*Delegate's Name (PRINT IN CAPS)

Date

Number

11-Aug-10

349070

COF Vehicle Inspector ID:

COF Vehicle Inspector Signature:

Date

All fields excluding those marked with * must be completed before this certificate can be accepted.

New Zealand Government

Form ID

LT400

Version No. 01/09

Document: Exemption: B1083673 HVB10/334 Level 9, PSIS House 20 Ballance Street PO Box 5084 Lambton Quay Wellington 6145 New Zealand T 64 4 894 5200 F 64 4 894 3305

EXEMPTION FROM SPECIFIED REQUIREMENTS OF LAND TRANSPORT RULE: Heavy-vehicle Brakes 2006, Rule 32015

www.nzta.govt.nz

Pursuant to Section 166(1) of the Land Transport Act 1998, and pursuant to the powers delegated to me, I Eugene Girardin, Vehicles Unit Engineer, hereby exempt the motor vehicle specified in Schedule 1 hereto from the section of Land Transport Rule: Heavy-vehicle Brakes 2006 (the Rule) listed in Schedule 2, subject to the conditions specified in Schedule 3.

SCHEDULE 1:

Make/Model: VIN/CHASSIS: Evans Eng Ltd, 4 Axle Full Trailer

7A85N0J0298258881

SCHEDULE 2: - Exempted Requirement

Section 2.3(9); The parking brake of a vehicle, whether or not it is being operated as a combination vehicle, must be able to be applied by the driver from the normal driving position using one control only.

SCHEDULE 3: - Conditions of this exemption:

- The vehicle must be fitted with a Wabco park-release emergency valve (PREV), Part Number: 971 002 900 0.
- The vehicle must be fitted with the Wabco PREV name plate, Part Number 971 002 103 4, adjacent to the PREV.
- The vehicle must still be fitted with a parking brake that complies with all parking brake requirements in the Rule other than the requirement in Clause 2.3(9) of the Rule.
- 4) The installation of the PREV must be approved in writing by Transport Specialties Limited (Transpecs) or an NZ Transport Agency appointed HVEK certifier acting on behalf of, and under instruction from, Transpecs; Transpecs must keep a written record of all approvals.
- An HVEK certifier in 4) must be fully trained in end of line procedures for Wabco electronically controlled braking systems
- Transpecs must provide full operator training in the use of the PREV and furnish the operator with full written operating instructions for the PREV.
- The vehicle must not be modified in any way while operating under this exemption.
- This original exemption must be kept by Transport Specialties LTD.
- A copy of this exemption (printed on a silver WABCO Sticker) must be affixed to the exempted vehicle as close to the WABCO PREV as possible.
- The sticker in 8) must be legible and include all printed area's of this original exemption letter.
- 11) This exemption can be revoked at any time in writing by the NZ Transport Agency.

Signed at Wellington this 30* day of July 2010

Eugene Girardin Engineer Tansport Special. -brake calculation no: TP 66A date 11.08.2010 LPC

LPC page 1 / 8

trailer (full, semi-, centre-axle) with air brake system acc. to 71/320/EEC, last amended by 98/12/EC and 2006/96/EC or UN/ECE-R.13.10

distribution: EVANS

CHASSIS 2538 LC100804

LT400, 349070

please note!

This brake calculation is made under consideration of -the legal precriptions mentioned above in the version valid alt the time of making the program (V6.09.06.08).

-the functional characteristics of our products, but not of those of other manufacturers, and -the other vehicle data included in the brake calculation.

Please check whether these data correspond to the actual vehicle data Our conditions of delivery apply (particularly section 9.0).

WABCOBrake V6.09.06.08 db 08.06.2009

vehicle manufacturer: EVANS

trailer model : 4AB TANKER

trailer type : 4-axle-full-trailer

remarks : air / hydraulic / VA suspension

WABCO TRAILER - EBS E TRISTOP 3+4: T.14/24

265/70 R 19,5

axle 1 + 2 + 3 + 4 : SAF, PAN 19-1, TDB 0749 ECE,

				unladen	laden
total mass	P	in	kg	5400	28000
axle 1	P1	in	kg	1450	7000
axle 2	P2	in	kg	1450	7000
axle 3			kg	1250	7000
axle 4	P4	in	kg	1250	7000
wheel base	E	in	mm	4800 - 4800	
centre of gravity height	h	in	mm	1170	1755
				axle 1 axle 2 axle 3 axle	4

no. of combined axles	1	1	1	1
no. of brake chambers per axle line KDZ	2	2	2	2
The power output corresponds to	BZ 122.1	BZ 122.1	BZ 119.6	BZ 119.6
brake chamber manufacturer	Meritor	Meritor	Meritor	Meritor
chamber size	14.	14.	T.14/24	T.14/24
lever length 1Bh in mm	69	69	69	69
brake factor [-]	23.03	23.03	23.03	23.03
dyn. rolling radius rdyn min in mm	421	421	421	421
dyn. rolling radius rdyn max in mm	421	421	421	421
threshold torque Co Nm	6.0	6.0	6.0	6.0
calculation:				į.
chamber pressure(rdyn min)pH at z=22,5%bar	2.4	2.4	2.1	2.1
chamber pressure (rdyn max) pH at z=22,5%bar	2.4	2.4	2.1	11 2.1
chamber press. (servo) pcha at pm6,5bar bar	5.8	5.8	4.6	4.6
piston force ThA at pm6,5bar N	5588	5588	4385	4385
brake force(rdyn min) T lad. at pm6,5bar N	42260	42260	33173	33173
brake force(rdyn max) T lad. at pm6,5bar N	42260	42260	33173	33173
brake force within 1 % rolling friction	42200	42200	22112	22712
proportion %	25.0	25.0	25.0	1 25.0

braking rate z laden 0.549 for rdyn min z = sum (TR)/PRmax 0.549 for rdyn max

Trailer may only be operated in combination with trucks/tractors with ISO 7638 supply (5 or 7 polar).

LPC

\$66.13

brake diagram :

maximum pressure: 8.5 bar

		-		-	
- 3	10		e	- 1-	
- 0	\sim	-	-	- 4	

valve 1: 971 002 ... 0 WABCO

EBS emergency valve

valve 2: 480 102 ... 0 WABCO

EBS trailer modulator

axle 2:

kle 2: valve 1: 971 002 ... 0 WABCO

EBS emergency valve

valve 2: 480 102 ... 0 WABCO

EBS trailer modulator

axle 3:

valve 1: 971 002 ... 0 WABCO

EBS emergency valve

valve 2: 480 207 0.. 0 WABCO

EBS relay valve

11 1

axle 4:

valve 1: 971 002 ... 0 WABCO

EBS emergency valve

valve 2: 480 207 0.. 0 WABCO

EBS relay valve

test type III (zIII = 0.30) for rdyn min : axle1 axle2 axle3 axle4

at pm 3.9 bar => pcha in bar : 3.2 3.2 2.7 test type III (zIII = 0.06) for rdyn min : axle1 axle2 axle3 axle4

pcha in bar : 0.7 0.7 at pm 1.4 bar =>

Tansport Special. -brake calculation no: TP 66A date 11.08.2010 LPC page 5 / 8

vehicle manufacturer: EVANS

trailer model : 4AB TANKER

trailer type : 4-axle-full-trailer

brake chamber and lever length :

axle 1: 2 x type/diameter 14. (Meritor) lever length 69 mm axle 2: 2 x type/diameter 14. (Meritor) lever length 69 mm axle 3: 2 x type/diameter T.14/24 (Meritor) lever length 69 mm axle 4: 2 x type/diameter T.14/24 (Meritor) lever length 69 mm

brake diagram :

valve:

971 002 ... 0 WABCO EBS emergency valve
480 102 ... 0 WABCO EBS trailer modulator
480 207 0.. 0 WABCO EBS relay valve

EBS input data

vehicle manufacturer: EVANS

trailer model : 4AB TANKER

trailer type : 4-axle-full-trailer

brake calculation no. : TP 66A

tire circumference main axle : 2650 for rdyn max tire circumference auxiliary axle : 2650 for rdyn max

assignment pm / deceleration z: pm 0.8 bar z = 0.000 (laden condition) 2.0 bar z = 0.116 6.5 bar z = 0.550

1920

1855 E

	contro	l pressure pm	6,5	contro	ol pressure pm	0.8	2.0	6.5
axle	axle load unladen	bellow pr. unladen	brake pr. unladen	axle load laden	bellow pr. laden		ake p laden	
1	1450	to be	1.6	7000	to be	0.3	1.2	5.8
2	1450	entered by	1.6	7000	entered by	0.3	1.2	5.8
3	1250	the vehicle	1.2	7000	the vehicle	0.3	1.3	4.6
4	1250	manufact.	1.2	7000	manufact.	0.3	1.3	4.6
5	0	1	0,0	0		0,0	0,0	0,0

The unladen values indicated in the above table are values for the basic parameter set. Higher unladen axle loads and liftaxles are automatically recognized and do not require separate adjustment. The above unladen axle loads must not be fallen below.

axle 1		axle 2		axle 3		axle	4
axle lo	ad pcyl	axle lo	ad pcyl	axle lo	ad pcyl	axle	load pcyl
1450	1.6	1450	1.6	1250	1.2	1250	1.2
1950	2.0	1950	2.0	1750	1.5	1750	1.5
2450	2.4	2450	2.4	2250	1.8	2250	1.8
2950	2.7	2950	2.7	2750	2.1	2750	2.1
3450	3.1	3450	3.1	3250	2.4	3250	2.4
3950	3.5	3950	3.5	3750	2.7	3750	2.7
4450	3.9	4450	3.9	4250	3.0	4250	3.0
4950	4.2	4950	4.2	4750	3.3	4750	3.3
7000	5.8	7000	5.8	7000	4.6	7000	4.6

```
Tansport Special. -brake calculation no: TP 66A date 11.08.2010 LPC +page 6 / 8
data sheet to EC/ECE vehicle type-approval certificate concerning braking
equipment: according to 98/12/EC annex IX 2.7.4 / ECE R13 annex 11
axle 1 : reference axle: SAF
                                 SBW 1937-... brake lining: Jurid 539
          test report :
                                    TDB 0749 ECE date : 13.10.2008
                                 SBW 1937-... brake lining: Jurid 539
TDB 0749 ECE date : 13.10.2008
axle 2 : reference axle: SAF
          test report :
                                 SBW 1937-... brake lining: Jurid 539
axle 3 : reference axle: SAF
                                   TDB 0749 ECE date : 13.10.2008
         test report :
axle 4 : reference axle: SAF
                                 SBW 1937-... brake lining: Jurid 539
                                   TDB 0749 ECE date
          test report :
                                                         : 13.10.2008
calc. verif. of residual (hot) braking force type III
                                            T' = 22.3 % Pe
(item 4.2 of appendix Tito annex VII)
axle 1 (rdyn 421 mm)
axle 2
                (rdyn 421 mm)
                                            T = 22.3 % Pe
axle 3
                (rdyn 421 mm)
                                            T = 18.9 % Pe
                                            T = 18.9 % Pe
axle 4
                (rdyn 421 mm)
calculated actuator stroke in mm
(item 4.3.1.1 of appendix I to annex VII)
                (sp = 57 mm)
axle 1
                                          s = 39 \text{ mm}
                 (sp = 57 mm)
axle 2
                                          s = 39 \text{ mm}
axle 3
                 (sp = 56 mm)
                                          s = 39 \text{ mm}
                                          s = 39 \text{ mm}
axle 4
                (sp = 56 mm)
average thrust output in N at pm = 6,5 bar (however max. pcha = 7,0 bar)
axle1
                                         ThA = 5588 N
axle2
                                         ThA = 5588 N
axle3
                                         ThA = 4385 N
axle4
                                         ThA = 4385 N
calc. residual (hot) braking force in N
(item 4.3.1.4 of appendix I to annex VII)
               (rdyn 421 mm)
axle 1
                                          T = 33284 N
                (rdyn 421 mm)
axle 2
                                          T = 33284 N
axle 3
                                          T = 26161 N
                (rdyn 421 mm)
axle 4
                (rdyn 421 mm)
                                          T = 26161 N
                                       basic test type III
                                       of subject
                                                   (calculated)
                                      trailer (z) residual
braking rate of the vehicle
                                                   (hot)braking
(item 4.3.2 to appendix I to annex VII) 0.55
                                                    0.43
required braking rate
                                                  >= 0,4 and
(items 1.3.3 and 1.6.2 to annex II)
                                                  >= 0,6*z (0.33)
calc. residual (hot) braking force in N
(item 4.3.1.4 of appendix I to annex VII)
axle 1
             (rdyn 421 mm)
                                          T = 33284 N
                (rdyn 421 mm)
(rdyn 421 mm)
axle 2
                                          T = 33284 N
axle 3
                                          T = 26161 N
axle 4
                                          T = 26161 N
                (rdyn 421 mm)
                                      basic test type III
                                      of subject (calculated)
                                      trailer (z) residual
                                                  (hot)braking
braking rate of the vehicle
(item 4.3.2 to appendix I to annex VII) 0.55
                                                    0.43
required braking rate
                                                  >= 0,4 and
```

>= 0,6*z (0.33)

(items 1.3.3 and 1.6.2 to annex II)

spring parking brake

		axle 3	axle 4
no of TRISTOP-actuators p	er axle line KDZ	2	2
TRISTOP-actuator type		T.14/24	T.14/24
lever length	1Bh in mm	69	69
stat. tyre radius	rstat max in mm	401	401
at a stroke of	s in mm	30	30
min. force of spring brak	e TFZ in N	7605	7605
sp.brake chamber no Merit	or	4	4
release pressure	pLs in bar		
		4.8	4.8

calculation:

ratio until road	3.9674	3.9674
<pre>iFb = lBh*Eta*C*rBt/(rBn*rstat</pre>	in mm 401	401
brake force of spring br. Tf Tf = (TFZ*KDZ-2*Co/lBh)*iFb	in N 59654	59654
braking rate zf lac zf = sum (Tf)/P + 0,01	den 0.444	

Test of the frictional connection required by the parking brake

minimum wheelbase/minimum supporting width min Ef necessary to fulfil the regulations

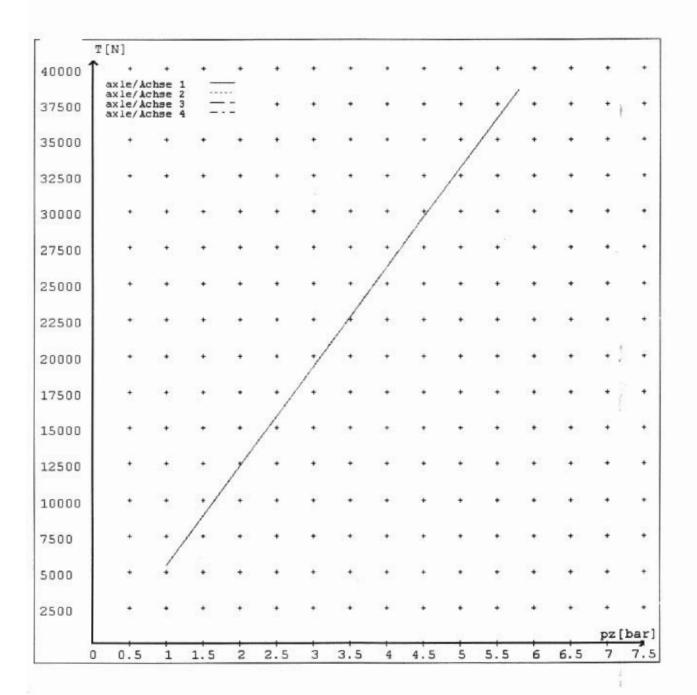
min Ef = E * (1 - PR/P + zferf * h/E) / (1 - zferf / (fzul * nf/ng))

min Ef = 3504 mm for E = 4800 mm min Ef = 3504 mm for E = 4800 mm

min Ef = minimum distance between front axle(s) (trailer) or support (semitraile and the rear axle(s) (resultant of the bogie)

E wheel base fzul 0.80 maximum permissible frictional connection required 0.18 maximum required braking ratio of the parking brake zferf = 1755 mm height of center of gravity - laden h = 14000 kg maximum bogie mass - laden PR P = 28000 kg maximum total mass - laden nf 2 no. of axle(s) with TRISTOP spring brake actuators 2 no. of bogie axle(s) ng

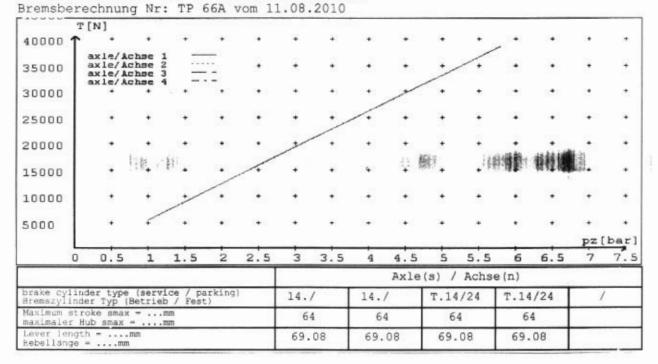
(1) (1) (1) (1) (1) (1)


285

reference values

reference values for z = 50%

	pz [bar]	T [N]	T [N]
axle 1	1.0	5383 38488	
axle 2	1.0 5.8	5383 38488	
axle 3	1.0 4.6		5383 30212
axle 4	1.0		5383 30212


VIN - no.:

reference values for z = 0.5

Angabe der Referenzwerte für z = 0.5

brake calculation no: TP 66A date 11.08.2010

NOTICE TO VEHICLE OPERATOR

THIS VEHICLE HAS A BRAKE SYSTEM WHICH HAS BEEN DESIGNED AND FITTED IN ACCORDANCE WITH THE NEW ZEALAND HEAVY VEHICLE BRAKE RULE 32015: SCHEDULE 5.

IF THIS VEHICLE IS OPERATED IN CONJUNCTION WITH NON-CODED VEHICLES, THERE MAY BE OPERATIONAL FACTORS WHICH NEED TO BE TAKEN INTO CONSIDERATION.

PLEASE REFER TO THE CERTIFIER FOR FURTHER INFORMATION.

EXCERPT FROM NZ HEAVY VEHICLE BRAKE RULE 32015

10.1 Responsibilities of operators

A person who operates a vehicle must ensure that the vehicle complies with this Rule

10.2 Responsibilities of repairers

A person who repairs or adjusts a brake must ensure that the repair or adjustment:

- (a) does not prevent the vehicle from complying with the rule: and
- (b) complies with Land Transport Rule: Vehicle Repair 1998.

10.3 Responsibilities of modifiers

A person who modifies a vehicle so as to affect the braking performance of the vehicle must:

- (a) ensure that the modification does not prevent the vehicle from complying with this rule: and
- (b) notify the operator that the vehicle must be inspected and. If necessary. Certified by a person or organisation appointed to carry out specialist inspection and certification of heavy vehicle brakes.

10.5 Responsibilities of manufactures and retailers

A person may manufacture, stock, or offer for sale a brake or its components. Intended for fitting to a vehicle to be used on New Zealand roads, only if that brake or component:

- (a) complies with this Rule: and
- (b) does not prevent a repair to a vehicle, its structure, systems, components and equipment from complying with this Rule.

IF YOU ARE UNSURE ABOUT YOUR RESPONSIBILITIES, PLEASE CONTACT THE VEHICLE MANUFACTURER, OR MYSELF.

COMPLAINTS. Complaints and Warranty issues which relate to Brake Certification will be acknowledged within 7 working days and a resolution proposed within 25 working days. Resolution of complaints and Warranty issues is subject to Transpecs Warranty policy. Customers have the right to appeal to the NZ Transport Agency if dissatisfied with a Compliance issue. (refer NZTA Deed Of Appointment Para 47.4)

NZ Transport Agency Helpdesk 0800 699 000

L.P.CAWTE (LPC HVEK)

NOTICE TO VEHICLE OPERATOR

This trailer is equipped with an Electronic Brake System.

To comply with the New Zealand Heavy Vehicle Brake Rule, it must be used only in conjunction with a truck/tractor equipped with a 5 or 7 pin ABS/EBS prover supply socket.

Failure to connect to such supply invalidates Brake Rule compliance.

The trailer ABS/EBS warning light on the towing vehicle dashboard must illuminate when the ignition is switched on and extinguish when the vehicle is in motion.

If the light does not illuminate when ignition is switched on, the system must be checked. If the light remains illuminated when the vehicle is in motion, Brake Rule compliance is compromised. Repairs must be made as soon as possible.

NB;

If this vehicle is fitted with mechanical (spring) suspension, the load sense valving has been adjusted to suit exactly the performance of the original springs. In event of replacement being required, original equipment springs **must** be fitted to ensure correct ongoing operation. Fitment of non genuine springs can affect operation and therefore, compliance.

If you are unsure of your responsibilities and/or obligations. please contact either the vehicle manufacturer or myself.

L P CAWTE (LPC HVEK) (09 980 7300)